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Distribution of the area enclosed by a two-dimensional random walk in a disordered medium
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The asymptotic probability distribution for a Brownian particle wandering in a two-dimensional plane with
random traps to enclose the algebraic areaA by time t is calculated using the instanton technique.
@S1063-651X~99!50403-0#
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It is well known that the properties of random walks a
dramatically changed by the presence of quenched diso
In particular, if a walker can be irreversibly trapped at so
randomly distributed sites, then the asymptotic probability
return to the starting point~or the total probability to survive
until time t) is given in d dimensions by p(t)
; exp(2ctd/(d12)) @1#, while the mean square displaceme
decreases compared to a pure diffusion:^r 2&;t2/(d12) @2#.
On the other hand, if a walker is advected by a random fo
then the total probability is conserved, but the diffusion c
efficient and the mean square displacement acquire loga
mic corrections@3#. Further examples can be found, for i
stance, in Ref.@4#. Much less, however, is known about th
influence of the quenched disorder on thetopologicalprop-
erties of random walks, which became a subject of theor
cal investigation very recently@5#. By ‘‘topological’’ prop-
erties we mean such characteristics as the winding numb
a Brownian particle, or the linking number of a closed po
mer, or the algebraic area enclosed by the trajectory o
random walker. In this Rapid Communication, we conce
trate on the latter case and calculate the asymptotic distr
tion of the area swept by a planar random walk wandering
the presence of traps.

The probability distribution for a random walk starting
some pointr 8 at t50 to end at a pointr after timet obeys
the diffusion equation

]P

]t
5D¹2P2U~r !P. ~1!

Here D is the diffusion coefficient andU(r )5U0( id(r
2Ri) is the random ‘‘potential,’’ which represents the tra
ping probability per unit time (U0.0). The positionsRi of
traps are distributed uniformly in a plane according to
Poisson law with mean densityr. The probability for a ran-
dom walk of ‘‘length’’ t to enclose the algebraic areaA can
be obtained by averaging the correspondingd-function con-
straint over the solutions of Eq.~1! in a given distribution of
traps:

P~A,tuU ![K dXA2
1

2E0

t

dt r 2~t!u̇~t!CL
P~r ,t;r8,0uU !

,
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whereu(t) is the angle between the radius-vectorr (t) of the
particle and some fixed direction in the plane. Writing thed
function as an integral over an auxiliary variableB, and us-
ing the Wiener path-integral formula for the solution of E
~1!, we arrive at the following expression:

P~A,tuU !5E
2`

`

dp eiBAE
r ~0!5r8

r ~ t !5r
Dr ~t! e2S[ r ~t!] , ~2!

where

S52E
0

t

dtX 1

2D
ṙ2~t!1U~r ~t!!1

i

2
Br2~t!u̇~t!C.

It is easy to see that the path integral on the right-hand s
of Eq. ~2! represents the Euclidean Green functi
GB(r ,t;r 8,0) of a fictitious quantum particle of massm
5(2D)21 moving in the random potentialU(r ) and in the
uniform magnetic fieldB ~we choose the units in which\
5e5c51). Let us now assume that the trajectory is clos
(r5r 8) and average the enclosed area distribution over
positions of the starting point:̂ ( . . . )& r5(1/V)*d2r
( . . . )(V is the system volume!. We have

P~A,tuU !5E
2`

`

dB eiBAZ~ t,BuU !,

whereZ(t,B) is the partition function at inverse ‘‘tempera
ture’’ 1/T5t. Averaging now over the positions of traps, w
finally obtain

P~A,t !5E
2`

`

dBE
0

`

dE eiBAe2EtN~E,B!, ~3!

whereN(E,B) is the average density of states of a quant
particle described by the Hamiltonian

H5D„2 i¹2A~r !…21U~r !. ~4!

We choose the cylindrical gauge for the vector potent
Au5Br/2.

In an ideal case~i.e., in the absence of traps!, the eigen-
values of the Hamiltonian~4! are the Landau levelsEn
5vc(n11/2), wherevc52DB is the cyclotron frequency
The density of states is then given by the set of equidis

s-
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d-function peaks, and the partition function can be eas
evaluated, resulting in the following expression for the e
closed area distribution:

P~A,t !;
1

cosh2x
, x;

A

Dt
. ~5!

This result was first obtained by Levy quite a while ago@6#.
The form of the dimensionless scaling variablex is quite
natural, since the only characteristic scale with dimension
ity of area in a clean system is the mean square displacem
^r 2&;Dt.

In order to calculate the density of states in the prese
of disorder, let us first estimate what characteristic scale
energy and magnetic field determine the asymptotic beha
of P(A,t). We are interested in the calculation of the pro
ability distribution at large but fixedt and A→`. As seen
from Eq. ~3!, this limit corresponds toE→0,B→0, andvc

!E. Therefore, it looks natural to start with the case ofB
50 and make sure that we are able to treat the magnetic
as a small perturbation in the relevant range of paramete

At B50, the low-energy behavior of the density of stat
is determined by the rare fluctuations of the concentration
impurities creating the large areas free of traps that are
to sustain the eigenstates withE→0. The asymptotic expres
sion is given by N(E,B50); exp(2constrD/E) at E
!E0 , whereE05rU0 is the mean value of the random p
tential @7#. Quantitatively, such exponentially small ‘‘tails’
are determined by the contributions of instantons, i.e., s
tially localized solutions of the saddle-point equations of
effective field theory. The typical size of a clean area, or
instanton diameter, grows in the time representation asl inst

;(Dt/r)1/4 @2#. If an external magnetic field is imposed o
the instanton, then its effect on the energy spectrum can
calculated perturbatively as long as the magnetic lengthl B

5A1/B considerably exceeds the instanton dimensionl inst,
which is the case ifA@(Dt/r)1/2. It is this condition that
determines the limits of applicability of our theory. Note al
that if we were interested in the calculation of the interm
diate asymptotics ofP(A,t) at moderateA, then we could
use the exact expressions for the density of states aE
2vc/2!vc @8# ~since the random potential is positive ever
where, the density of states vanishes atE,vc/2).

Let us now calculate the effect of an external magne
field on instantons explicitly. The density of states can
expressed in terms of the retarded Green function of
Schrödinger equation with the Hamiltonian~4!: N(E,B)5
2(pV)21*dDr Im ^GR(r ,r ;E,B)&U , where GR(r ,r 8;E,B)
5^r u(E2H1 i0)21ur 8&. The Green function can, in turn, b
calculated by standard means of the quantum field theory
order to carry out the averaging over the positions of tra
we resort to the supersymmetry approach, in which the c
cellation of denominators is achieved by doubling the
grees of freedom and introducing the commuting and a
commuting fields on equal footing~see, for instance, Ref
@9#!. Before disorder averaging, the retarded Green func
can be written as the following functional integral:
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GR~r ,r 8;E,B!52 i lim
h→10

E D 2F~r !w~r !w̄~r 8!

3expXi E d2r F̄~E2H1 ih!FC, ~6!

where the two-component superfields

F~r !5S w~r !

c~r ! D , F̄~r !5~w* ~r !,c̄~r !!

are composed of a Bose fieldw and a Grassmanian fieldc,
andD 2F5(1/p)D(Rew)D(Im w)Dc̄Dc. The probability
of having N impurities located at the pointsR1 , . . . ,RN in
the areaV in the plane is given by the Poisson law:

PN~R1 , . . . ,RN!5
e2rV

N!
~rV!N.

Using this expression to average Eq.~6! over the positions of
traps, we end up with the following effective action:

iS@F#5E dDr $ i F̄„E2D~2 i¹2A!21 ih…F

2r~12e2 iU 0F̄F!%. ~7!

An important property of the action~7! is that it is invari-
ant under the global supersymmetry transformations, mix
the boson and fermion sectors:

F→F̃5TF, ~8!

whereT is a 232 unitary supermatrix@9#. Due to this sym-
metry, the problem of finding the saddle points of Eq.~7! can
be considerably simplified. Indeed, since the saddle-p
manifold is invariant under the transformations~8!, we are
able to seek the instanton solution in the following form:

F inst~r !5S w inst~r !

0 D , ~9!

wherew inst(r )5w inst(r ) is a cylindrically symmetric spatially
localized function. If the boson fields are written asw5w1
1 iw2 ,w* 5w12 iw2 , wherew1,2 are real on the initial func-
tional integration contour, then the imaginary part of t
Green function is determined by a nontrivial saddle point
the action in the complex plane ofw1,2 @10,11#, and

N~E,B!;e2Sinst~E,B!, ~10!

with the exponential accuracy. The fermion sector can
neglected as long as we are not interested in calculatio
the pre-exponential factor in Eq.~10!.

In order to make Eq.~7! in the boson sector real, we rota
the integration contour:w1,2→e2 ip/4w1,2. As a result of this,
the exponent on the right-hand side of Eq.~6! changes:
iS@F#→2S@F#, where the actionS is

S5E d2r $w i„2E1D~2 i¹2A!2
…w i1r~12e2U0w i

2
!%

~11!
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( i 51,2). Introducing the dimensionless variables:

r 5jx, w inst~r !5AU0f ~x!,

wherej5AD/E, we obtain, from Eq.~11!, a nonlinear dif-
ferential equation for the saddle-point solutionf:

2
1

x

d

dxS x
d

dxD f 1b2x2f 1a2e2 f 2
f 5 f , ~12!

wherea5AE0 /E@1 andb5vc/4E!1. Similar equations
without a magnetic field were obtained in Refs.@12,13#, us-
ing different techniques.

Due to complexity of the equation~12!, we are able to
find only an approximate solution. To this end, we repla
the ‘‘potential’’ V( f )5a2e2 f 2

in Eq. ~12! by a piecewise
constant potential:

Veff~ f !5H a2, at f ,1

0, at f .1.
~13!

Then, Eq.~12! becomes effectively linear and reduces to
couple of the Schro¨dinger equations, whose solutionsf 1,2(x)
satisfy the following conditions:

f 1~x1!5 f 2~x1!51, f 18~x120!5 f 28~x110!, ~14!

where x1(a,b) is the position of the discontinuity in th
effective potential, which is to be determined se
consistently. Going back to the dimensional variables, i
easy to see from Eqs.~11! and~12! that the instanton action
is proportional to the area of the effective potential well:

Sinst5prj2x1
2 . ~15!

Let us start with the case ofB50, i.e.,b50. The solution
of the linearized saddle-point equations can be written in
form

f ~x!5H f 1~x!5C1J0~x!, at 0,x,x1

f 2~x!5C2K0~ax!, atx1,x,
~16!

whereJ0(x) andK0(x) are the Bessel functions of real an
imaginary arguments, respectively. Substituting this solut
in the matching conditions~14!, we obtain the equation

J1~x!

J0~x!
5a

K1~ax!

K0~ax!
. ~17!

In the limit a→`, assuming thatx1;1 and using the
asymptotic expansions of the Bessel functions@14#, we ob-
tain J0(x1)50, i.e.,x15a, wherea'2.405 is the first zero
of the functionJ0(x). After substitution into Eqs.~15! and
~10!, the Lifshitz resultN(E); exp(2constrD/E) is recov-
ered.

In principle, one can find the exact solutions of the Sch¨-
dinger equations inside and outside the potential well aB
Þ0 ~they are expressed in terms of the confluent hyperg
metric functions!, match them at the pointx5x1 , and finally
end up with a transcendental equation forx1(a,b), which
can be solved atb→0. However, we prefer not to follow this
procedure here, because the same results can be obt
e

s

e

n

o-

ned

using much more physically apparent reasoning in the sp
of the Lifshitz original derivation@7#. First we note that, in
the limit a→`, the instanton solution satisfies the Schr¨-
dinger equation for a particle confined in the potential w
with infinitely high walls in a magnetic field. The groun
state energye0 is equal to unity~in the units ofE). In the
absence of a magnetic field this condition fixes the radius
the well atx1(0)5a. At bÞ0, the lowest order perturbativ
correction to the ground state energy is

de05

b2E
0

a

dx x3f 2~x!

E
0

a

dx x f2~x!

, ~18!

where f (x);J0(x) is the unperturbed ground state wa
function ~16!. Calculating the integrals with the Bessel fun
tions, we obtainde05cb2, where c.1.261. To keep the
ground state energy fixed, this correction should be comp
sated by the corresponding increase in the radius of the
tential well: x1

2(b)5x1
2(0)(11de0). Substituting this into

Eq. ~15!, we finally obtain

Sinst~E,B!.
prDa2

E S 11
cD2

4E2
B2D . ~19!

This expression is valid atE→0,B→0,vc /E→0.
The asymptotic probability distribution of the enclose

area can now be obtained from Eqs.~3!, ~10!, and ~19! by
calculating the integrals by the steepest descent method

P~A,t !;E
2`

`

dBE
0

`

dE eiBAe2Ete2Sinst~E,B!

; exp~2AprDa2t !expH 2
aAp

c

ArA2

~Dt !3/2J .

~20!

The first exponential on the right-hand side is nothing but
asymptotic ‘‘tail’’ of the total probability p(t)
5*dAP(A,t) for a random walker not to be trapped@1#.
The second exponential thus represents the conditional p
ability to enclose the areaA, provided that a walker has
survived until timet.

We see that the asymptotic behavior ofP(A,t) is drasti-
cally changed by the presence of disorder, compared to
Levy result~5!. The distribution becomes Gaussian,P(A,t)
; exp(2x2), with the scaling variable

x;
A

Dt
~rDt !1/4, ~21!

so that the standard deviation now grows slower than in
clean case:̂A2&1/2;t3/4 ~the mean valuêA& is, of course,
zero!. Such a different form of the scaling variable can
related to the presence of an extra length scaler r;A1/r in
the system, which depends on the concentration of the t
~nothing depends on the absolute valueU0 of the random
potential!. Note also that a similar Gaussian distribution w
obtained in Ref.@15# for a two-dimensional random walk in
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a box of a finite sizeL. In this case, the fictitious magnet
field was also treated perturbatively, giving rise to^A2&1/2

;L(Dt)1/2. Qualitatively, such a difference between the tw
systems is due to the fact that in our case the size of
effective potential well is not constant, but grows with tim
asL(t)5 l inst(t);t1/4.

In conclusion, we studied the asymptotic probability d
tribution of the algebraic area enclosed by a planar rand
ie
e

-
m

walk in the presence of immobile random traps. It is sho
that this probability is directly related to the ‘‘Lifshitz tail’’
in the density of states of a quantum particle in a Pois
disorder and uniform magnetic field. Unlike the case of
ideal random walk, the enclosed area distribution turns ou
be Gaussian with the standard deviation growing ast3/4.
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