RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 59, NUMBER 3 MARCH 1999

Distribution of the area enclosed by a two-dimensional random walk in a disordered medium
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The asymptotic probability distribution for a Brownian particle wandering in a two-dimensional plane with
random traps to enclose the algebraic akday timet is calculated using the instanton technique.
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It is well known that the properties of random walks arewhere6(t) is the angle between the radius-veatft) of the
dramatically changed by the presence of quenched disordgparticle and some fixed direction in the plane. Writing the
In particular, if a walker can be irreversibly trapped at somefunction as an integral over an auxiliary variatideand us-
randomly distributed sites, then the asymptotic probability taing the Wiener path-integral formula for the solution of Eq.
return to the starting poir(pr the total probability to survive (1), we arrive at the following expression:
until time t) is given in d dimensions by p(t)
~ exp(—ct¥@+2) 1], while the mean square displacement
decreases compared to a pure diffusiorf)~t2@+2) [2],

On the other hand, if a walker is advected by a random force,
then the total probability is conserved, but the diffusion co-,
efficient and the mean square displacement acquire logarith-
mic correctiond 3]. Further examples can be found, for in- t
S=— fodr(

% . r(t)y=r
P(AL U)=f dp e'BAf Dr(r)e S (2)
—o r(0)=r’

1 ., i .
— (T)+U(I’(T))+§BI'2(T)0(T).

stance, in Ref[4]. Much less, however, is known about the 2Dr

influence of the quenched disorder on theological prop-
erties of random walks, which became a subject of theoreti-
cal investigation very recent]&ﬁ]_ By “topo|ogica|” prop- Itis easy to see that the path integral on the I’ight-hand side
erties we mean such characteristics as the winding number & Ed. (2) represents the Euclidean Green function
a Brownian particle, or the linking number of a closed poly-9s(r.t;r’,0) of a fictitious quantum particle of mass
mer, or the algebraic area enclosed by the trajectory of & (2D) ™" moving in the random potentia(r) and in the
random walker. In this Rapid Communication, we concen-uniform magnetic field8 (we choose the units in which
trate on the latter case and calculate the asymptotic distriou=€=Cc=1). Let us now assume that the trajectory is closed
tion of the area swept by a planar random walk wandering i{r =r') and average the enclosed area distribution over all
the presence of traps. positions of the starting point((...)),=(1/Q)[d?

The probability distribution for a random walk starting at ( . . . )(€ is the system volumeWe have
some pointr’ att=0 to end at a point after timet obeys

he diffusi i .
the diffusion equation P(A,tlU)=J dB €°AZ(1 B|U),

JP
—=DV?P-U(r)P. ) . ., . .
at whereZ(t,B) is the partition function at inverse “tempera-

ture” 1/T=t. Averaging now over the positions of traps, we
Here D is the diffusion coefficient andJ(r)=UyZ;8(r finally obtain
—R;) is the random “potential,” which represents the trap-
ping probability per unit time y,>0). The positionsR; of o % ,
traps are distributed uniformly in a plane according to the P(A,t)=f dBf dE €%e"F'IN(E,B), (©)
Poisson law with mean densipy The probability for a ran- - 0
dom walk of “length” t to enclose the algebraic ar@acan
be obtained by averaging the correspondéafyinction con-
straint over the solutions of Eql) in a given distribution of
traps:

whereN(E,B) is the average density of states of a quantum
particle described by the Hamiltonian

H=D(—iV—A(r))>+U(r). 4

1t .
P(A,t|U)E< 5(A— Ef dr rz(r)a(r))> , We choose the cylindrical gauge for the vector potential:
0 P(r,t;r’,0U) Ay=Br/2.
In an ideal casdi.e., in the absence of trapghe eigen-
values of the Hamiltoniar(4) are the Landau levelg,
*Permanent address: L. D. Landau Institute for Theoretical Phys= w(n+ 1/2), wherew.=2DB is the cyclotron frequency.
ics, Kosygina Str. 2, 117940 Moscow, Russia. The density of states is then given by the set of equidistant
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S-function peaks, and the partition function can be easily _— o ) —
evaluated, resulting in the following expression for the en- ~ G™(r.r";E,B)=—i lim JD D(r)e(r)e(r’)
closed area distribution: n—+0

Xexp(iJ d2r®(E-H+in)®|, (6)

A
P(At)~ sty DU (5 where the two-component superfields
o= 50, BO=(* 0,50

This result was first obtained by Levy quite a while 46

The form of the dimensionless scaling varialdds quite  are composed of a Bose field and a Grassmanian fielg,

natural, since the only characteristic scale with dimensionaland D2® = (1/7) D(Re¢)D(Im zp)DEDz//. The probability
ity of area in a clean system is the mean square displacemegt having N impurities located at the poin®y, ... Ry in

(r?)~Dt. the area in the plane is given by the Poisson law:

In order to calculate the density of states in the presence
of disorder, let us first estimate what characteristic scales of
energy and magnetic field determine the asymptotic behavior
of P(A,t). We are interested in the calculation of the prob-
ability distribution at large but fixed and A—o. As seen Using this expression to average K@) over the positions of
from Eq. (3), this limit corresponds t&—0,B—0, andw, traps, we end up with the following effective action:
<E. Therefore, it looks natural to start with the caseBof
=0 and make sure that we are able to treat the magnetic field iS[®]= f dDr{iq_D(E— D(—iV—A)?+in)®
as a small perturbation in the relevant range of parameters.

At B=0, the low-energy behavior of the density of states _p(l_efiuo&p)}_ @
is determined by the rare fluctuations of the concentration of
impurities creating the large areas free of traps that are able An important property of the actiofY) is that it is invari-
to sustain the eigenstates wih-0. The asymptotic expres- ant under the global supersymmetry transformations, mixing
sion is given by N(E,B=0)~ exp(—constpD/E) at E  the boson and fermion sectors:
<E,, whereEy=pU, is the mean value of the random po- _
tential [7]. Quantitatively, such exponentially small “tails” O—-P=TO], (8
are determined by the contributions of instantons, i.e., spa- ) ) ) _
tially localized solutions of the saddle-point equations of theVhereT is a 2xX 2 unitary supermatrix9]. Due to this sym-
effective field theory. The typical size of a clean area, or theMetry, the problem of finding the saddle points of Eg.can
instanton diameter, grows in the time representatioh, as be c'onS|Qer.anyIS|mpI|f|ed. Indeed, since .the saddle-point
~(Dt/p)Y4[2]. If an external magnetic field is imposed on manifold is invariant under the transformatio(®, we are

the instanton, then its effect on the energy spectrum can b%ble to seek the instanton solution in the following form:

calculated perturbatively as long as the magnetic lemhgth

=/1/B considerably exceeds the instanton dimensigg, CI)mst(r)z(
which is the case iA>(Dt/p)Y2. It is this condition that

determlnes the I!mlts of apphcablllty of our theory. Npte aISOWhere(pinS((l’) = ¢ine(r) is a cylindrically symmetric spatially
that if we were interested in the calculation of the interme-,alized function. If the boson fields are written @s ¢,
diate asymptotics of?(A,t) at moderateA, then we could +igy,0* = @1 —i¢,, Wherep, ,are real on the initial func-

use the exact expressions for the density of state& at yjong| integration contour, then the imaginary part of the
— wd2<w.[8] (since the random potential is positive every- Green function is determined by a nontrivial saddle point of

-pQ

N!

PN(R]_, . !RN): (pQ)N

@inst1)

O 1 (9)

where, the density of states vanishegat w/2). _the action in the complex plane of, , [10,11, and
Let us now calculate the effect of an external magnetic '
field on instantons explicitly. The density of states can be N(E,B)~e ™ Sns(EB) (10)
expressed in terms of the retarded Green function of the
Schralinger equation with the Hamiltonia@): N(E,B) = with the exponential accuracy. The fermion sector can be

—(7Q) " 1fd°r Im(GR(r,r;E,B))y, where GR(r,r’;E,B)  neglected as long as we are not interested in calculation of
=(r|(E-—H+i0)"Y|r"). The Green function can, in turn, be the pre-exponential factor in E¢LO).

calculated by standard means of the quantum field theory. In In order to make Eq(7) in the boson sector real, we rotate
order to carry out the averaging over the positions of trapsthe integration contourcpl,z—>e*'”’4go1,2. As a result of this,

we resort to the supersymmetry approach, in which the carthe exponent on the right-hand side of H&§) changes:
cellation of denominators is achieved by doubling the deiS[®]— —F ®], where the actiors is

grees of freedom and introducing the commuting and anti-
commuting fields on equal footin¢see, for instance, Ref. _ 2 . 2 CUno?
[9]). Before disorder averaging, the retarded Green function S‘f d’r{@i(~E+D(—iV—-A)?))g;+p(1—e Yo%)}
can be written as the following functional integral: (11
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(i=1,2). Introducing the dimensionless variables: using much more physically apparent reasoning in the spirit
of the Lifshitz original derivatior{7]. First we note that, in
r=£&x, @insr)=vUof(x), the limit «—, the instanton solution satisfies the Sehro

_ ) ) dinger equation for a particle confined in the potential well
where¢=\D/E, we obtain, from Eq(11), a nonlinear dif-  with infinitely high walls in a magnetic field. The ground

ferential equation for the saddle-point solutibn state energy, is equal to unity(in the units ofE). In the

1d/ d absence of a magnetic field this condition fixes the radiys of
-z —(x— f+ B2 + ate f=f, (12)  the well atx,(0)=a. At 5#0, the lowest order perturbative

x dx| " dx correction to the ground state energy is

where a=+Ey/E>1 and 8= wJ4E<1. Similar equations , (@ 5

without a magnetic field were obtained in Reff$2,13, us- B fo dx xX*f2(x)

ing different techniques. Seg= , (18)

Due to complexity of the equatiofil2), we are able to fadx x2(x)
find only an approximate solution. To this end, we replace 0

the “potential” V(f)=a2e‘f2 in Eq. (12) by a piecewise

constant potential: where f(x)~Jy(x) is the unperturbed ground state wave

function (16). Calculating the integrals with the Bessel func-
a?, atf<1 tions, we obtainde,=cB2, wherec=1.261. To keep the
0 atf>1 (13 ground state energy fixed, this correction should be compen-
’ ' sated by the corresponding increase in the radius of the po-

Then, Eq.(12) becomes effectively linear and reduces to atential well: xj(8)=x}(0)(1+ deo). Substituting this into
couple of the Schidinger equations, whose solutiofis(x) ~ Ed- (15), we finally obtain
satisfy the following conditions: ,
wpDa
fi(x)=Fu(x1)=1, f1(x,—0)="15(x,+0), (14 Sins E,B)=—¢

Verl(F) =

cD?
1+ -—B?
4E2

. (19

where x;(a,B) is the position of the discontinuity in the This expression is valid &— 0,B— 0,w./E—0.
effective potential, which is to be determined self- The asymptotic probability distribution of the enclosed
consistently. Going back to the dimensional variables, it isarea can now be obtained from Eq8), (10), and (19) by

easy to see from Eq¢l1) and(12) that the instanton action calculating the integrals by the steepest descent method:
is proportional to the area of the effective potential well:

—_ - - JBA ,—Etn—SipsfE.B)
Sins= ﬂ.p§2xi_ (15) P(A,T) Jlood Bfo dE €BAe Ele Sinst
Let us start with the case &=0, i.e.,8=0. The solution a\/; \/—AZ
of the linearized saddle-point equations can be written in the ~ exp(— JmpDa’t)exp| — —— d _
form C (Dt)3?
F(0)=Clo(x),  atO0<x<x, (20
f(x)= fo(X)=CoKo(ax),  atx;<Xx, (16) The first exponential on the right-hand side is nothing but the

asymptotic “tail” of the total probability p(t)
whereJy(x) andKy(x) are the Bessel functions of real and = fdAP(A,t) for a random walker not to be trappéd].
imaginary arguments, respectively. Substituting this solutiorThe second exponential thus represents the conditional prob-

in the matching condition§l4), we obtain the equation ability to enclose the ared, provided that a walker has
survived until timet.
Ji(x) N Ky(ax) (17 We see that the asymptotic behavior/@fA,t) is drasti-

Jo(X) Ko(ax)® cally changed by the presence of disorder, compared to the

o _ . Levy result(5). The distribution becomes Gaussig?(A,t)
In the limit a—ox, assuming thab(l""l and using the fve)(p(_xz)7 with the Sca”ng variable

asymptotic expansions of the Bessel functiph4], we ob-
tain Jo(X4) =0, i.e.,x;=a, wherea~2.405 is the first zero
of the functionJy(x). After substitution into Eqs(15) and
(10), the Lifshitz resultN(E) ~ exp(—constpD/E) is recov-
ered. so that the standard deviation now grows slower than in the
In principle, one can find the exact solutions of the Sehro clean case(A2)Y2~t34 (the mean valuéA) is, of course,
dinger equations inside and outside the potential weB at zerg. Such a different form of the scaling variable can be
#0 (they are expressed in terms of the confluent hypergecarelated to the presence of an extra length scg&e\/m in
metric functiong, match them at the point=x;, and finally ~ the system, which depends on the concentration of the traps
end up with a transcendental equation fgf«,8), which  (nothing depends on the absolute valug of the random
can be solved g8— 0. However, we prefer not to follow this potentia). Note also that a similar Gaussian distribution was
procedure here, because the same results can be obtaingatained in Ref[15] for a two-dimensional random walk in

A
X~ ﬁ(th)lM' (21
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a box of a finite sizd.. In this case, the fictitious magnetic walk in the presence of immobile random traps. It is shown
field was also treated perturbatively, giving rise(#?)Y?  that this probability is directly related to the “Lifshitz tail”
~L(Dt)¥2 Qualitatively, such a difference between the twoin the density of states of a quantum particle in a Poisson

systems is due to the fact that in our case the size of thdisorder and uniform magnetic field. Unlike the case of an
effective potential well is not constant, but grows with time ideal random walk, the enclosed area distribution turns out to

asL(t)=1,(t)~t¥4 be Gaussian with the standard deviation growing®4s

In conclusion, we studied the asymptotic probability dis- This work was financially supported by the Engineering
tribution of the algebraic area enclosed by a planar randorand Physical Sciences Research CoufidiK.).
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